Separation of 'Through-space' and 'Through-bond' Interactions as a Consequence of Fluorosubstitution

by Edgar Heilbronner and John P. Maier

Physikalisch-Chemisches Institut der Universität Basel

(2. XI. 73)

Summary. The PE. spectra of [2, 2]paracyclophane (1), 4-amino[2, 2]paracyclophane (2) and 1,1,2,2,9,9,10,10-octafluoro[2,2]paracyclophane (3) are presented. The bands corresponding to ejection of the photoelectron from the five highest occupied π -orbitals have been assigned. The 'observed' orbital energies (*i.e.* the negative ionization potentials) are discussed in terms of 'through space' and 'through-bond' interactions between the semi-localized π -orbitals (e_{1g}) of the benzene moieties and the C, C- σ -orbitals of the ethylene bridges.

The PE. spectrum of **3** shows that the fluorine-induced lowering of the C, C- σ -orbital energy effectively 'turns-off' the 'through-bond' interaction. The resulting pattern of the first four bands confirms the assignment given for **1**.

Finally the band shifts induced by an amino group in position 4 are again in agreement with this assignment. Attention is drawn to the phenomenon of 'orbital switching' as a consequence of substitution in loosely coupled systems such as 1.

The photoelectron (PE.) spectrum of [2,2] paracyclophane (1) was first described by *Pignataro*, *Mancini*, *Ridyard & Lempka* [1] who attributed the broad peak at 8 eV to two ionizing transitions only. *Boschi & Schmidt* [2] have shown that in agreement with the theoretical predictions of *Gleiter* [3] this feature should be assigned to the three transitions of 1 to its radical cation 1^+ in the states $1^{2}B_{2g}$, ${}^{2}B_{3u}$, ${}^{2}B_{3g}$. The second band at 9.5 eV was assigned to a transition to the ${}^{2}B_{2u}$ state of 1^+ .

In the present contribution we wish to confirm and extend this assignment of the π -bands of 1, by making use of the information contained in the PE. spectra of the derivatives 4-amino[2,2]paracyclophane (2) and 1,1,2,2,9,9,10,10-octafluoro[2,2]-paracyclophane (3).

The analysis of these spectra leads to the recognition of a novel consequence of the 'fluoro-effect' [4] concerning the competition of 'through-space' and 'through-bond' interactions [5] in molecules such as 1. Furthermore, attention is drawn to the phenomenon of 'orbital-switching' which has to be taken into consideration when a qualita-

¹) The labels refer to the coordinates as defined in [3] (cf. (2)). Note that in ref. [2] the x and y axes are interchanged relative to this convention.

tive discussion of the effect of substituents on loosely coupled π -systems (e.g. in 1) is attempted.

PE.-Spectra. – In Fig. 1 are shown the He I PE. spectra of 1, 2 and 3 which have been recorded on a spectrometer built according to the specifications given by *Turner* [6]. This incorporated a $\pi/\sqrt{2}$ cylindrical condenser analyser of 10 cm radius and the source of excitation was He I radiation. The spectra were recorded at elevated temperatures (~100° to 200°) with an effective working resolution of $E/\Delta E \approx 250$. The ionization potentials were determined by an internal calibration procedure by a rare gas mixture. The data are collected in Tab. 1, together with previous results for 1 and with the proposed assignment of the π -bands. This is also displayed graphically in the correlation diagram of Fig. 2.

Theoretical Model. – Detailed molecular orbital calculations for 1 have been carried out repeatedly [3] [7]. However, for the purpose of this communication we shall use an almost qualitative, stripped-down ZDO LCMO model which yields a transparent rationalization of the observed effects rather than optimally adjusted values for the band positions.

As a basis we chose the benzene $\mathbf{e_{1g}}(\pi)$ orbitals, which are symmetric (S) or antisymmetric (A) relative to a reflexion in the x, z-plane (see (2)), e.g. for the upper phenylene unit

$$\boldsymbol{\Phi}(\mathbf{u}, \mathbf{S}) = \frac{1}{\sqrt{12}} \left(2 \, \phi_{3} + \phi_{4} - \phi_{5} - 2 \, \phi_{6} - \phi_{7} + \phi_{8} \right)$$

$$\boldsymbol{\Phi}(\mathbf{u}, \mathbf{A}) = \frac{1}{2} \left(\phi_{4} + \phi_{5} - \phi_{7} - \phi_{8} \right)$$
(1)

the numbering of the $2p_z$ -atomic orbitals ϕ_{μ} corresponding to the convention shown in formula 1. The phases of the corresponding orbitals $\boldsymbol{\Phi}$ (l, S) and $\boldsymbol{\Phi}$ (l, A) of the lower ring relative to those given in (1) are defined in (2).

Finally we include two C, C- σ -orbitals φ_a and φ_b of the C(1), C(2) and C(9), C(10) carbon-carbon-bonds in the linear combination

$$\boldsymbol{\Psi} = c_{1} \boldsymbol{\Phi} (\mathbf{u}, \mathbf{S}) + c_{2} \boldsymbol{\Phi} (\mathbf{l}, \mathbf{S}) + c_{3} \boldsymbol{\Phi} (\mathbf{u}, \mathbf{A}) + c_{4} \boldsymbol{\Phi} (\mathbf{l}, \mathbf{A}) + c_{5} \boldsymbol{\varphi}_{a} + c_{6} \boldsymbol{\varphi}_{b}$$
(3)

In a first approximation we postulate that

$$\langle \boldsymbol{\Phi} (\mathbf{i}, \mathbf{X}) | \boldsymbol{\mathcal{H}} | \boldsymbol{\Phi} (\mathbf{i}, \mathbf{X}) \rangle = \mathbf{A}; \quad \langle \boldsymbol{\Phi} (\mathbf{u}, \mathbf{X}) | \boldsymbol{\mathcal{H}} | \boldsymbol{\Phi} (\mathbf{l}, \mathbf{X}) \rangle = \boldsymbol{\tau}$$
 (4)

for i = u, l and X = S, A and that

$$\langle \boldsymbol{\varphi}_{\mathbf{j}} | \boldsymbol{\mathcal{H}} | \boldsymbol{\varphi}_{\mathbf{j}} \rangle = \alpha; \quad \langle \boldsymbol{\varphi}_{\mathbf{j}} | \boldsymbol{\mathcal{H}} | \boldsymbol{\Phi} (\mathbf{i}, \mathbf{S}) \rangle = \pm \beta / \sqrt{3}$$
 (5)

153

the sign of the right side in the latter expression depending on the relative phases of φ_{j} (j = a, b) and Φ (i, S) (i = u, l) (cf. (2)).

For reasons of symmetry the molecular orbitals $\boldsymbol{\varPsi}_i$ derivable from the basis functions (2) are

$$\mathbf{b}_{2g}(\pi) = \frac{1}{\sqrt{2}} \left(\boldsymbol{\Phi} (\mathbf{u}, \mathbf{S}) + \boldsymbol{\Phi} (\mathbf{l}, \mathbf{S}) \right)$$

$$\mathbf{b}_{3u}(\pi) = \frac{\lambda}{\sqrt{2}} \left(\boldsymbol{\Phi} (\mathbf{u}, \mathbf{S}) - \boldsymbol{\Phi} (\mathbf{l}, \mathbf{S}) \right) - \frac{\xi}{\sqrt{2}} \left(\boldsymbol{\varphi}_{\mathbf{a}} - \boldsymbol{\varphi}_{\mathbf{b}} \right)$$

$$\mathbf{b}_{3g}(\pi) = \frac{1}{\sqrt{2}} \left(\boldsymbol{\Phi} (\mathbf{u}, \mathbf{A}) + \boldsymbol{\Phi} (\mathbf{l}, \mathbf{A}) \right)$$

$$\mathbf{b}_{2u}(\pi) = \frac{1}{\sqrt{2}} \left(\boldsymbol{\Phi} (\mathbf{u}, \mathbf{A}) - \boldsymbol{\Phi} (\mathbf{l}, \mathbf{A}) \right)$$

$$\mathbf{b}_{3u}(\sigma) = \frac{\xi}{\sqrt{2}} \left(\boldsymbol{\Phi} (\mathbf{u}, \mathbf{S}) - \boldsymbol{\Phi} (\mathbf{l}, \mathbf{S}) \right) + \frac{\lambda}{\sqrt{2}} \left(\boldsymbol{\varphi}_{\mathbf{a}} - \boldsymbol{\varphi}_{\mathbf{b}} \right)$$

$$\mathbf{a}_{g}(\sigma) = \frac{1}{\sqrt{2}} \left(\boldsymbol{\varphi}_{\mathbf{a}} + \boldsymbol{\varphi}_{\mathbf{b}} \right)$$
(6)

where $\xi \approx 2 \langle \varphi_{\mathbf{a}} | \mathcal{H} | \Phi(\mathbf{u}, \mathbf{S}) \rangle / (\mathbf{A} - \alpha) = -2\beta / \sqrt{3} (\mathbf{A} - \alpha)$ and $\xi^2 + \lambda^2 = 1$. The corresponding π -orbital energies $\varepsilon(\Psi_1)$ are then

$$\varepsilon(\mathbf{b}_{2\mathbf{g}}(\pi)) = \varepsilon(\mathbf{b}_{3\mathbf{g}}(\pi)) = \mathbf{A} + \tau$$

$$\varepsilon(\mathbf{b}_{3\mathbf{u}}(\pi)) \qquad \approx \mathbf{A} - \tau + \frac{4}{3} \beta^2 / (\mathbf{A} - \alpha) \qquad (7)$$

$$\varepsilon(\mathbf{b}_{2\mathbf{u}}(\pi)) \qquad = \mathbf{A} - \tau$$

The expressions on the right side of formulae (7) are nothing but a much simplified rationalization of the results obtained by *Gleiter* [3]. In agreement with his calculation they suggest that the first feature in the PE. spectrum of 1 *i.e.* the composite band at 9.5 eV is due to the superposition of three bands (labelled 1, 2, 3 in Fig. 1) arising from the ejection of the photoelectron from $\mathbf{b}_{2g}(\pi)$, $\mathbf{b}_{3g}(\pi)$ and $\mathbf{b}_{3u}(\pi)$ respectively. This is supported by the integrated intensity of this multiple band, which is slightly larger than three times the intensity of the single band 4 (ejection from $\mathbf{b}_{2u}(\pi)$). This ratio does not differ too much when He II radiation is used.

Little evidence can be advanced at this stage for the relative sequence of the three orbitals $\mathbf{b}_{2g}(\pi)$, $\mathbf{b}_{3g}(\pi)$, $\mathbf{b}_{3u}(\pi)$. The half-width of the composite band is ~ 0.9 eV, as compared to ~ 0.6 eV for the double band of *p*-ditrifluoro-methyl-benzene, trifluoro-methyl-benzene [8] or similar derivatives of benzene which do not possess a 'lose-bolt' substituent. Consequently the spread of the three individual, overlapping bands 1, 2

and 3 cannot be significantly larger than 0.3 eV. However, we note that the triple band exhibits a rather sharp onset which strongly suggests that the component at lowest ionization potential (*i.e.* band 1) is presumably not the one due to ejection from $\mathbf{b}_{3u}(\pi)$. The reason is that the band associated with this process should be rather broad as a consequence of the large through bond interaction *i.e.* the mixing of ($\boldsymbol{\Phi}$ (u, S) – $\boldsymbol{\Phi}(1, S)$)/ $\sqrt{2}$ with ($\boldsymbol{\varphi}_{\mathbf{a}} - \boldsymbol{\varphi}_{\mathbf{b}}$)/ $\sqrt{2}$ as shown in (6). In the following discussion we shall make the conservative assumption that bands 1, 2 and 3 are accidentally degenerate *i.e.* that they possess orbital energies $\varepsilon(\mathbf{b}_{2g}(\pi)) \approx \varepsilon(\mathbf{b}_{3u}(\pi)) \approx -8.3$ eV. (Note that the calculations reported in [3] suggest the sequence $\mathbf{b}_{2g}(\pi)$ above $\mathbf{b}_{3u}(\pi)$ above $\mathbf{b}_{3g}(\pi)$).

		1				3		2	
	This wo	rk	[2]	[1]					
1	² B ₂ g	8.1 ₀ (7.6 ₀)	8.1		² B _{2 g}	9.30	Ĩ	7.5 ₀ (6.9 ₀)	
2	² B _{3 u}	8.4 ₀	8.6	8.4	$^{2}\mathrm{B}_{3g}$	(8.9 ₀)	Ã	7.9 ₀	
3	² B _{3 g}	Ū	j		$^{2}\mathrm{B}_{3\mathrm{u}}$	10.5_0 (10.1 ₀)	B	8.2 ₀	
4	² B _{2 u}	9.6 ₅ (9.3 ₀)	9.5	9.7	${}^{2}\mathrm{B}_{2\mathrm{u}}$	10.75	Ĉ	9.0 ₀ (8.7 ₀)	
5	² B _{1 u}	10.3 ₀ (10.0 ₀)		10.3	$^{2}\mathrm{B}_{1}$ "	11.7_{5} (11.3 ₀)	Ď	10.0 ₀ (9.7 ₀)	
6		11.3		11.7		12.7	Ĩ	10.7	

Table 1. Vertical $(I_{v, j})$ and adiabatic $(I_{v, a})$ ionization potentials of [2, 2] paracyclophane (1) and its derivatives 2 and 3. All values in eV. Adiabatic ionization potentials are in parentheses

To calibrate our model we use the observed vertical ionization potentials $I_{v,j}$ (Tab. 1) assuming the validity of *Koopmans*' theorem [9]

$$\mathbf{I}_{\mathbf{v},\mathbf{j}} = -\varepsilon(\boldsymbol{\Psi}_{\mathbf{j}}) \tag{8}$$

where Ψ_{j} is the molecular orbital vacated in the process corresponding to the band j. Apart from the assumption that the three highest occupied π -orbitals $\mathbf{b}_{2g}(\pi)$, $\mathbf{b}_{3u}(\pi)$ and $\mathbf{b}_{3g}(\pi)$ are accidentally degenerate ($\epsilon(\mathbf{b}_{2g}(\pi)) \approx \epsilon(\mathbf{b}_{3u}(\pi)) \approx \epsilon(\mathbf{b}_{3g}(\pi)) = -8.3 \text{ eV}$) and that $\epsilon(\mathbf{b}_{2u}(\pi)) = -9.7 \text{ eV}$, we need an estimate for α (see (5)) to solve (7) in terms of A, τ and β . Parametrized LCBO-treatments [10] or the application of localization procedures [11] to SCF-procedures used for the interpretation of PE. spectra [12] suggest a value of $\sim -16 \text{ eV}$ for the C, C-bond self-energy. However, in our model we have to take the interaction with the C, H-orbitals into consideration which tends to destabilize φ_{a} and φ_{b} . Consequently the value $\alpha = -14 \text{ eV}$ was chosen, as suggested by *Gleiter* [3]. Solving (7) yields:

A = -9.0 eV;
$$\tau = 0.7 \text{ eV}; |\beta|\sqrt{3}| = 1.4 \text{ eV}$$
 (9)

The PE. spectrum of [2, 2]paracyclophane (1). – According to the model discussed above, the triple band at 8.5 eV corresponds to the transition of 1 to 1⁺ in the π -states ${}^{2}B_{2g}$, ${}^{2}B_{3u}$ and ${}^{2}B_{3g}$ with ${}^{2}B_{3u}$ being either the second or third state. Because of the bend in the two phenylene units ($R_{3,14} = 2.78$ Å, $R_{4,13} = 3.09$ Å [13]) we may assume that through-space interaction between $\boldsymbol{\Phi}$ (u, S) and $\boldsymbol{\Phi}$ (l, S) (which have large atomic orbital coefficients in positions 3, 6, 11 and 14) is larger than between $\boldsymbol{\Phi}$ (u, A) and $\boldsymbol{\Phi}$ (l, A) (which have a node going through these centres). Accordingly we may assume that the ground state of 1⁺ is ${}^{2}B_{2g}$, as proposed in ref. [2] and [3]. There is little doubt that the isolated single band 4 at 9.7 eV corresponds to the ${}^{2}B_{2u}$ state of 1⁺.

In benzene the lowest π -orbital $\mathbf{a}_{1u}(\pi)$ has an energy $\epsilon(\mathbf{a}_{1u}(\pi)) = -12.2 \text{ eV}$ [4]. Methylsubstitution in *para*-position, to yield *p*-xylene, shifts this orbital to roughly - 11 eV [14]. If we assume that through-space interaction between the corresponding orbitals of the upper and lower phenylene moieties in **1** is again described by $\tau = 0.7$ eV (see (9)) then the combination antisymmetric with respect to the x, y-plane should lie at -11 + 0.7 = -10.3 eV. Ejection of an electron from this orbital will therefore lead to band 5 at 10.3 eV which corresponds to the ²B_{1u} state of **1**⁺. Note that this orbital $\mathbf{b}_{1u}(\pi)$ has the wrong symmetry for through bond interaction.

This assignment is the one given in Tab. 1 and Fig. 2.

Fig. 2. Orbital-correlation diagram. The orbital energies are those derived from the PE. spectra according to (8).

The PE. Spectrum of 1,1,2,2,9,9,10,10-octafluoro[2,2]paracyclophane (3). – Replacement of the four methylene groups 1 by four difluoromethylene units to yield 3 will affect primarily the *Coulomb* integrals A and α (see (4) and (5)). Assuming that

no dramatic change in geometry occurs as a consequence of this substitution, the resonance integrals τ and β defined in (4) and (5) will remain unchanged.

From the PE. spectra of trifluoromethyl-benzene, p-ditrifluoromethyl-benzene and of related trifluoromethyl substituted benzene derivatives [8] [15] it is known that both $\mathbf{e_{1g}}(\pi)$ orbitals are equally stabilized by roughly -0.5 eV per trifluoromethyl substituent so that no split occurs between the symmetric and antisymmetric orbital, presumably because of an accidental cancellation of inductive and conjugative effects [16]. Consequently we expect that A for the four π -orbitals $\boldsymbol{\Phi}$ (i, X) is lowered to A' = A - 1 eV = -10 eV approximately.

On the other hand it has been shown that σ -orbitals such as φ_a and φ_b are depressed considerably if the hydrogen atoms are replaced by fluorine [4]. Depending on the type of C, C-bond this depression can easily exceed -5 eV, so that α , as defined in (5) will be shifted to $\alpha' \approx -20$ eV, or lower, in **3**.

This depression of α has a rather amusing consequence for the orbital sequence in 3 as compared to that of 1. As indicated in (7) through bond interaction shifts the $\mathbf{b}_{3u}(\pi)$ orbital in 1 by $\frac{4}{3}\beta^2/(\mathbf{A}-\alpha)$ towards higher energies. Therefore, an increase in the difference $\mathbf{A} - \alpha = 5$ eV (in 1) to $\mathbf{A}' - \alpha' \approx 10$ eV or more (in 3) will lead to a sizeable reduction of through bond interaction in the latter molecule. In other words, we can effectively 'turn off' through bond interaction by lowering the orbital energy of the σ -orbitals 'out of reach' of the interacting π -orbitals.

This special type of fluoro-effect is nicely demonstrated by the PE. spectrum of 3, as shown in the correlation diagram of Fig.2. The fluorine induced shifts are -1.0 to -1.3 eV for the orbitals $\mathbf{b_{2g}}(\pi)$, $\mathbf{b_{3g}}(\pi)$, $\mathbf{b_{2u}}(\pi)$ and $\mathbf{b_{1u}}(\pi)$ but -2.1 eV for $\mathbf{b_{3u}}(\pi)$. This result indicates that the interpretation given for the PE. spectrum of 1 is essentially correct.

The PE. spectrum of 4-amino[2, 2]paracyclophane (2). - To conclude we discuss the PE. spectrum of 2. The influence of an amino substituent in position ρ on the orbital energy $\varepsilon(\Psi_i)$ can be described as an inductive perturbation $\delta \alpha$ of the Cou*lomb* term associated with the atomic orbital ϕ_{e} and/or a conjugative interaction between $\pmb{\phi}_{\varrho}$ and $\pmb{\phi}_{\mathtt{N}}$, the doubly occupied atomic orbital of the amino group. In the framework of our simple model both mechanisms lead to the same predictions because a first order inductive effect will shift Ψ_j by $\delta \varepsilon_{ind}(\Psi_j) = c_{je}^2 \delta \alpha$ whereas the second order conjugative effect leads to $\delta \varepsilon_{\text{conj}}(\boldsymbol{\Psi}_j) = c_{j\ell}^2 \beta_{CN}^2 / (\varepsilon(\boldsymbol{\Psi}_j) - \alpha_N) i.e.$ both effects are essentially proportional to $c_{i\varrho}^2$, as long as the difference $\varepsilon(\Psi_j) - \alpha_N$ stays roughly constant. The coefficient c_{io} is usually taken from the unperturbed molecular orbitals $\pmb{\Psi}_{\mathbf{i}}, i.e.$ under the implicit assumption that the perturbed orbital $\pmb{\Psi}_{\mathbf{i}}'$ does not differ significantly from Ψ_1 . We shall now show that in systems such as 1 and 2 the problem is slightly more complex, because a substituent (e.g. an amino group in position 4) will compete with the C,C- σ -orbitals φ_a and φ_b for the nodes or the largest atomic orbital coefficients of the molecular orbitals $\boldsymbol{\Phi}$ (u, S) and $\boldsymbol{\Phi}$ (u, A), thus causing a rotation of these orbitals.

Perturbing the substituted centre 4 by $\delta \alpha = \langle \phi_4 | \mathbf{h} | \phi_4 \rangle$ (where **h** stands for the perturbation operator) introduces, in addition to the matrix elements given in (4) and (5), the following ones into the secular determinant based on (3):

$$\langle \boldsymbol{\Phi} (\mathbf{u}, \mathbf{S}) | \mathbf{h} | \boldsymbol{\Phi} (\mathbf{u}, \mathbf{S}) \rangle = \delta \alpha / 12$$

$$\langle \boldsymbol{\Phi} (\mathbf{u}, \mathbf{A}) | \mathbf{h} | \boldsymbol{\Phi} (\mathbf{u}, \mathbf{A}) \rangle = \delta \alpha / 4$$

$$\langle \boldsymbol{\Phi} (\mathbf{u}, \mathbf{S}) | \mathbf{h} | \boldsymbol{\Phi} (\mathbf{u}, \mathbf{A}) \rangle = \delta \alpha / 4 \sqrt{3}$$

(10)

Chosing arbitrarily $\delta \alpha = 3 \text{ eV}$ and using the parameters (10), we obtain the following results for the model of 2, which are compared to those of the unperturbed system 1:

1 (Sym. D_{2h}) Unperturbed: $\delta \alpha = 0$		2 (Sym. C ₁) Perturbed: $\delta \alpha = 3 \text{ eV}$			
Orbital	Energy eV	Orbital	Energy eV		
$\boldsymbol{\varPsi}_{1} \equiv \boldsymbol{b}_{2\mathrm{g}}(\pi)$	-8.3	$\boldsymbol{\Psi}_{1}{}^{\prime}$	-7.6		
$\boldsymbol{\Psi_2} \equiv \mathbf{b_{3g}}(\pi)$	-8.3	${oldsymbol{\Psi_2}}'$	-8.3		
$\boldsymbol{\varPsi}_3 \equiv \mathbf{b}_{3\mathrm{u}}(\boldsymbol{\pi})$	-8.3	$\Psi_{3}{}'$	-8.3	(11)	
$\boldsymbol{\varPsi}_4 \equiv \mathbf{b}_{2\mathrm{u}}(\pi)$	-9.7	$\Psi_{4}{}'$	-9.5		
$\boldsymbol{\Psi}_{5} \equiv \mathbf{a}_{\mathbf{g}}(\sigma)$	-14.0	$\Psi_{5}^{'}$	-14.0		
$\boldsymbol{\varPsi}_{6} \equiv \mathbf{b}_{3u}(\sigma)$	15.4	$\boldsymbol{\Psi}_{6}^{'}$	15.4		

We note that according to our model for 2, two of the first four bands, *i.e.* 1 and 4, are shifted towards lower ionization potentials by 0.7 and 0.2 eV respectively relative to the corresponding bands in the PE. spectrum of 1, whereas the positions of bands 2 and 3 remain unchanged. As can be seen from Fig. 1 and 2 this is a fairly good description of the observed spectra.

However, for a more precise comparison we need to know how the orbitals Ψ_1' to Ψ_4' of 2 relate to the orbitals of the unperturbed system 1. To this end we form the overlap matrix S between the two sets of molecular orbitals Ψ_j' and Ψ_k

$$\mathbf{S} = (\mathbf{S}_{\mathbf{j}\mathbf{k}}) = (\langle \boldsymbol{\Psi}_{\mathbf{j}}' | \boldsymbol{\Psi}_{\mathbf{k}} \rangle) \tag{12}$$

which yields:

	$oldsymbol{\Psi}_1$	$oldsymbol{\Psi}_2$	$oldsymbol{\Psi}_3$	$oldsymbol{\Psi}_4$	${oldsymbol{\varPsi}}_5$	$\boldsymbol{\varPsi}_{6}$	
	$\mathbf{b_{2g}}({m{\pi}})$	$\mathbf{b_{3g}}(\pi)$	$\mathbf{b_{3u}}(\boldsymbol{\pi})$	$\mathbf{b_{2u}}(\boldsymbol{\pi})$	$\mathbf{a}_{\mathbf{g}}(\sigma)$	$\mathbf{b}_{3\mathbf{u}}(\sigma)$	
$\Psi_{1^{'}}$.442	.766	386	262	0	.019	
Ψ_{2}^{-}	865	.501	0	0	0	0	
$\Psi_{3^{'}}$	201	348	916	004	0	.001	(13)
$\Psi_{4}^{'}$	119	206	.109	964	0	.011	
Ψ_{5}'	0	0	0	0	1	0	
$\boldsymbol{\Psi}_{6^{'}}^{"}$	006	012	.007	.015	0	1.000	

This matrix (13) shows that $\Psi_3' \approx \Psi_3 = \mathbf{b}_{3\mathbf{u}}(\pi)$ and $\Psi_4' \approx \Psi_4 = \mathbf{b}_{2\mathbf{u}}(\pi)$, which means that these two orbitals resemble closely those of the parent molecule. In contrast Ψ_1' and Ψ_2' differ from Ψ_1 and Ψ_2 . The ratio of the overlaps of Ψ_2' with $\Psi_1 \equiv \mathbf{b}_{2\mathbf{g}}(\pi)$ and $\Psi_2 \equiv \mathbf{b}_{3\mathbf{g}}(\pi)$ is $\mathbf{S}_{21}/\mathbf{S}_{22} = -\sqrt{3}$, which means that Ψ_2' is simply the antisymmetric orbital $\Psi_2 \equiv \mathbf{b}_{3\mathbf{g}}(\pi)$ of 1 switched by 60° as shown in the diagram b of Fig.3. The reason for this switch is obvious: the orbital Ψ_2 of 1 is antisymmetric with respect to the x, y-plane, so that the interaction with φ_a und φ_b is zero. The perturbed centre 4

158

in 2 choses the node of the orbital with the result that no asymmetry and no interaction with φ_a and φ_b is induced. The case of Ψ_1' is slightly more complex. In a first

Fig. 3. Schematic representation of the 'switched' orbitals Ψ_1' , (a) and Ψ_2' , (b) of 4-amino[2,2]paracyclophane

approximation the orbital may be represented as shown in the diagram of Fig. 3. Here the centre 4 choses the largest atomic orbital coefficient of $\boldsymbol{\Phi}$ (u, S) so that this orbital is switched again by 60°. However, the lower orbital corresponds more closely to $\boldsymbol{\Phi}$ (l, A). Thus it becomes rather difficult to correlate $\boldsymbol{\Psi}_{1}'$ in a simple way to one of the π -orbitals $\boldsymbol{\Psi}_{1}$ of 1.

This work is part 62 of project No. 2.477.71 of the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung ('Applications of Photoelectron Spectroscopy'. Part. 61: [17]). J. P. M. thanks the Royal Society for a Research Fellowship. Finally we want to thank Prof. Dr. D. J. Cram for a gift of the samples 2 and 3 used in this investigation. Financial support by Ciba-Geigy S. A., F. Hoffmann-La Roche & Cie. S. A., and Sandoz S. A. is gratefully acknowledged.

REFERENCES

- [1] S. Pignataro, V. Mancini, J. N. A. Ridyard & H. J. Lempka, Chem. Comm. 1971, 142.
- [2] R. Boschi & W. Schmidt, Angew. Chem. 83, 408 (1973); Int. Ed. 12, 402 (1973).
- [3] R. Gleiter, Tetrahedron Letters 1969, 4453.
- [4] C. R. Brundle, M. B. Robin, N. A. Kuebler & H. Basch, J. Amer. chem. Soc. 94, 1451 (1972);
 C. R. Brundle, M. B. Robin & N. A. Kuebler, J. Amer. chem. Soc. 94, 1466 (1971); B. Narayan & J. N. Murrell, Mol. Physics 19, 169 (1970).
- [5] R. Hoffmann, Accounts Chem. Res. 4, 1 (1971).
- [6] D. W. Turner, Proc. Roy. Soc. (London) A 307, 15 (1968).
- [7] J. Koutecky & J. Paldus, Coll. Czech. Chem. Commun. 27, 599 (1962); M. T. Vala, I H. Hillier, S. A. Rice & J. Jortner, J. chem. Physics 44, 23 (1966); F. Gerson & W. B. Martin, Jr., J. Amer. chem. Soc. 91, 1883 (1969); A. Ishitani & S. Nagakura, Mol. Physics 12, 1 (1967); and references given therein.
- [8] D. W. Turner, C. Baker, A. D. Baker & C. R. Brundle, Molecular Photoelectron Spectroscopy, Wiley-Interscience, London, 1970.
- [9] T. Koopmans, Physica 1, 104 (1934).
- [10] D. F. Brailsford & B. Ford, Mol. Physics 18, 621 (1970); J. N. Murrell & W. Schmidt, J. C. S. Faraday II 1972, 1709.
- [11] V. Edmiston & K. Ruedenberg, Rev. Mod. Physics 34, 457 (1963); W. England, L. S. Salmon & K. Ruedenberg, Fortschr. chem. Forschg. 23, 31 (1971).
- [12] E. Heilbronner & A. Schmelzer, in preparation.
- [13] H. Hope, J. Bernstein & K. N. Trueblood, Acta Cryst. B28, 1733 (1972).
- [14] J. P. Maier & D. W. Turner, J. C. S. Faraday II 1972, 1209; M. Klessinger, Angew. Chem. 84, 544 (1972).
- [15] A. D. Baker, D. P. May & D. W. Turner, J. C. S. B1968, 22.
- [16] G. L. Caldow & G. F. S. Harrison, Tetrahedron 25, 3429 (1969).
- [17] F. Brogli, E. Heilbronner, E. Kloster-Jensen, A. Schmelzer, A. S. Manocha, J. A. Pople & L. Radom, Chem. Physics, in press.